
Empirical Investigations 
of Mathematical Skills

Hansjörg Neth
CogWorks Laboratory

Rensselaer Polytechnic Institute

Cognitive Science Tutorial II:
PhiMSAMP-2, Utrecht, October 19–21, 2007



Rensselaer Cognitive
Science

Overview
• Basics:

– Core systems of number
– Representational effects

• Case studies:
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Topic Method(s) Reference(s)

Arithmetic:
decimal effects 

Experimentation Neth (2004)

Arithmetic:
notational properties 

Experimentation
Landy & Goldstone 

(2007)

Arithmetic:
inversion problems

Experimentation, 
microgenetic analysis

Siegler & Stern (1998)

Geometry:
expert proofs

Computational modeling, 
expertise research

Koedinger & Anderson 
(1990)

Algebra:
equation solving

Computational modeling, 
fMRI

Anderson (2005, 2007)
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Science

Mathematical Cognition

• A young, but booming discipline

• Motivations:

– experimental psychology:  well-defined domain, 
simple correlates of mental process

– brain mapping: neural correlates

– learning & instruction: math as key skill
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What is a number, that a man may know it,
and a man, that he may know a number?
                                 Warren McCulloch (1965)
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Issues & Recommendation

• Multiple levels:  

– human adults ⇄ infants ⇄ animals

– mathematical constructs ⇄ mental representations 

                                     ⇄ brain implementation

– continuous magnitude/quantity ⇄ discrete symbols 

                                              ⇄ verbal labels 

• Recommended reading:
Stanislas Dehaene (1997): 
The Number Sense: How the mind 
creates mathematics. OUP.
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Biological Basis & Constraints

• Evolution of number sense

– phylogenetic: numerosity in other species

– ontogenetic: infants → adults

• Sources of evidence:

– Homologies, e.g., distance and number size effects
– Lesion studies
– Brain circuitry

• 2 core systems of number (Feigenson, Dehaene, Spelke, 2004)
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System 1:  Approximate Magnitude

• Example: Xu & Spelke (2000)

• Fuzzy representation of magnitude
(“how much”)

– ratio limits: 
8:16 > 6:9 > 7:8 

– fails for small numerosities
(1 vs. 2, 2 vs. 4, 2 vs. 3) 

– multimodal abstraction
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discrimination is subject to a ratio limit of 1:2 at 6 months
and of 2:3 at 9 months, and they successfully discriminate
only numerosities of four and above. The convergence of
findings across these disparate types of entities suggests
that infants’ discrimination depends on abstract repre-
sentations of numerosity. Furthermore, these abstract
representations support number-relevant computations.

Infants recognize ordinal relationships between numeros-
ities [8], and formexpectations about the outcomes of simple
arithmetic problems such as 5 þ 5 (Figure 1b) [9].

These hallmarks of approximate number represen-
tations are instantiated in models representing numer-
osity as a fluctuatingmental magnitude, akin to a ‘number
line’, shared across modalities [10–14]. There are

Figure 1. (a–d) Four types of tasks used to test infants’ quantity representations. The tables below each task list evidence that has been obtained for the engagement of
either of the two core systems, and for which computations are performed over the representations generated by the systems. ‘Approximate magnitude’ is the represen-
tation generated by the first core system. ‘Distinct individuals’ is the representation generated by the second core system. Parenthetic references cite experiments yielding
conclusive evidence for the engagement of either of the two core systems. Other experiments on infants’ quantitative abilities remain indeterminate as to which system is
contacted (e.g. [67]).
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System 1:  Representation
• Numerosity as a fluctuating mental magnitude, 

measured on a continuous number-line

– 2 alternative mathematical models:

– increasing overlap for larger numerosities
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currently two competingmathematical formulations of the
number line (Figure 2), although their behavioral predic-
tions are highly similar. The linear model with scalar
variability represents the number line as a series of

equally spaced distributions with increasing spread. The
logarithmic model with fixed variability represents suc-
cessive numerosities on a logarithmic scale subject to a
fixed amount of noise. In both models, larger numerosities
are represented by distributions that overlap increasingly
with nearby numerosities. This variability increases the
likelihood of confusing a target with its neighbors, yielding
infants’ ratio-dependent performance.

Core system 1 in older children and adults
Older children and adults share this system for represent-
ing large, approximate numerosities [3,10,15–17]. When
shown arrays of dots or sequences of sounds under
conditions that prevent counting, adults discriminate
numerosities when continuous variables are controlled,
their discrimination is subject to a ratio limit, and the ratio
limit is identical for arrays from different modalities. Like
those of infants, adults’ numerical representations there-
fore show two hallmarks: they are ratio-dependent and are
robust across multiple modalities of input.

What is the relationship between this approximate
number system and the system of symbolic number that
supports exact enumeration and arithmetic? Early work
showed that adults are faster to determine which of two
Arabic digits is larger when the numerosities are small
and/ormore distant from each other [18]. These two factors
collapse into thesameratiodependencethat isobservedwith
visual or temporal arrays, now seen with numerosities
presented in symbolic form. Ratio dependence in symbolic
numerical comparison has also been revealed in children
as young as 5 years [17], suggesting that children quickly
learn to map symbolic numbers onto their pre-existing
representations of numerical magnitude. Recent evidence
suggests that this mapping is initially logarithmic but
becomes linear during the elementary school years,
consistent with the thesis that the mental number-line is
logarithmically compressed, and that children and adults
learn to compensate for this compression [19].

Core system 1: Summary
To sum up, the findings indicate that infants, children and
adults share a common system for quantification. This
system yields a noisy representation of approximate
number that captures the inter-relations between differ-
ent numerosities, and is robust across modalities and
across variations in continuous properties. This system

Box 1. Infants’ computation of discrete versus continuous

quantities

Early experiments on infants’ quantitative abilities did not fully
disentangle discrete and continuous variables, leaving the source of
infants’ responses ambiguous. More recent studies with stringent
controls illustrate that infants can represent both types of
information.

In tasks involving large numbers of elements, infants compute
discretenumber.With total surfacearea, contour length, display size,
item size and item density all neutralized, infants dishabituate to
changes between 8 versus 16 dots [2] and sounds [6]. That these
activate infants’ approximate representations of numerical magni-
tude is suggested by the signature of ratio-dependent performance.
Furthermore, large-number arrays appear spontaneously to trigger
numerical representations only; infants have difficulty extracting
information about the continuous properties of large number arrays
when number is controlled for [66].

Whereas the first core system outputs specifically numerical
representations, the second system allows for the representation of
continuous variables and of discrete number. Evidence comes from
tasks producing the set-size signature of the system for representing
small numbers of individuals. In someof these tasks, infants respond
based on the total continuous properties of the array. Given a choice
between two quantities of food, infants opt to maximize the total
quantity of food rather than the number of pieces of food [20]. And
when continuous variables are pitted against number in habituation
and violation-of-expectation tasks, infants respond to continuous
variables, such as total contour length or area [23,24]. However, the
system for representing numerically distinct individuals also sup-
ports discrete numerical computations. Infants search for hidden
objects based on the number of objects hidden, not on the total
amount of continuous ‘object-stuff’ hidden [22]. And in a habituation
task with strict controls for continuous variables, infants respond to
discrete number if the array contains objects with highly dissimilar
features (Feigenson, unpublished).

Why do infants sometimes compute continuous extent and
sometimes compute number over representations of small numbers
of individuals? Although no definitive answer has been found,
infants’ performance can be interpreted in light of the stimuli
presented and the behavior required. Computing total continuous
extent over arrays of food objects makes sense if the goal is to
maximize the amount one gets to eat. Computing number when
searching for objects makes sense when the goal is to obtain an
individual object, rather than a detached quantity of ‘stuff.’ Still,
because no single rule decides when infants will compute continu-
ous versus discrete properties of a small-number array, this area is
ripe for future investigation.

Figure 2. Two models of the mental number line (Core system 1), a linear model (a) and a logarithmic one (b), depicting mental activation as a function of numerosity.
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System II:  Precise Numerosity
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discrimination is subject to a ratio limit of 1:2 at 6 months
and of 2:3 at 9 months, and they successfully discriminate
only numerosities of four and above. The convergence of
findings across these disparate types of entities suggests
that infants’ discrimination depends on abstract repre-
sentations of numerosity. Furthermore, these abstract
representations support number-relevant computations.

Infants recognize ordinal relationships between numeros-
ities [8], and formexpectations about the outcomes of simple
arithmetic problems such as 5 þ 5 (Figure 1b) [9].

These hallmarks of approximate number represen-
tations are instantiated in models representing numer-
osity as a fluctuatingmental magnitude, akin to a ‘number
line’, shared across modalities [10–14]. There are

Figure 1. (a–d) Four types of tasks used to test infants’ quantity representations. The tables below each task list evidence that has been obtained for the engagement of
either of the two core systems, and for which computations are performed over the representations generated by the systems. ‘Approximate magnitude’ is the represen-
tation generated by the first core system. ‘Distinct individuals’ is the representation generated by the second core system. Parenthetic references cite experiments yielding
conclusive evidence for the engagement of either of the two core systems. Other experiments on infants’ quantitative abilities remain indeterminate as to which system is
contacted (e.g. [67]).
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shows a signature ratio limit that is probably explained by
logarithmic compression of its underlying representation
of numerical magnitude. Finally, the first core system
becomes integratedwith the symbolic number systemused
by children and adults for enumeration and computation.

Core system 2: Precise representations of distinct
individuals
Core system 2 in infants
The approximate system is not our only source of
numerical information. Infants and adults have a second
system for precisely keeping track of small numbers of
individual objects and for representing information about
their continuous quantitative properties.

In one experiment, 10- and 12-month-old infants chose
between two quantities of hidden crackers (Figure 1c) [20].
Infants watched an experimenter sequentially hide, for
example, one cracker in a bucket on the left, and 1 þ 1 ¼ 2
crackers in a bucket on the right.With choices of 1 vs. 2 and
2 vs. 3 equal-sized crackers, infants spontaneously chose
the larger quantity. However, with choices of 3 vs. 4, 2 vs. 4,
3 vs. 6, and even 1 vs. 4 crackers, infants chose randomly
despite the highly discriminable ratio between the
quantities (Figure 3) [20].

This performance pattern differs dramatically from
that observed with large numerosities in the studies
reviewed above, because infants’ success depended not on
numerical ratio but on the absolute number of items
presented, with an upper-bound of 3. This striking limit on
infants’ small number quantification appears in at least
two other paradigms. First, infants successfully discrimi-
nate 2 vs. 3 but not 4 vs. 6 items in a habituation task [21],
despite the identical ratio difference. Second, the 3-item
limit was found in a task in which infants saw objects
hidden sequentially in a box and then searched to retrieve
them (Figure 1d) [22]. Fourteen-month-olds matched their

searching to the number of objects hidden, but only for
numerosities 1, 2 and 3. Infants’ search patterns show that
they successfully represented the hiding of ‘exactly 1’,
‘exactly 2’, and ‘exactly 3’ objects. However, when 4 objects
were hidden, infants retrieved one of them and then
stopped searching. Importantly, in this experiment the
continuous extent of the objects was controlled for. Thus, in
this task, infants base their searching on the exact number
of objects hidden and not on continuous variables (Box 1).

Besides computing numerosity, infants also compute
the total continuous extent of small object arrays. In the
cracker task described above, infants presented with one
large cracker versus two crackers totaling half the area of
the large one reliably preferred the bucket with one [20].
As infants succeeded in this task only when 3 or fewer
crackers were hidden in either location, this suggests that
they represented the crackers as distinct individuals, up to
a limit of 3, and then summed across these to represent the
amount of total cracker material in each bucket. This
sensitivity to continuous variables has been observed in
many paradigms, including habituation and violation-of-
expectation, demonstrating the importance of this com-
putation when representing small numbers of objects
(Box 1) [5,23,24].

Like the first core system, the system for representing
small numbers of distinct individuals yields a consistent
signature across abstract representations. Just as with
object arrays, infants precisely represent the individuals
in visual-event and auditory sequences (e.g. puppet jumps
and sounds) [25]. Here again, infants fail to represent
arrays greater than 3, fail to represent number when
continuous variables are controlled, and often respond
instead to summary representations of amount of motion
or amount of sound. Nevertheless, there are limits on the
types of individuals that can be represented by this
system. Streams of continuous substances or objects that
come into and go out of existence are not successfully
tracked either by adults [26,27] or by infants [28,29]. These
shared constraints provide further evidence for the
deployment of the second core system across development
(see also [30–32]).

Core system 2 in adults
One long-standing and still unanswered question concerns
the role of exact small-number representations in adults’
symbolic number processing. When adults enumerate
elements in dot arrays, performance is fast and nearly
perfect for the numerosities 1–4, after which error rate or
response time rise sharply and climb with increasing
numerosity [33,34]. This discontinuity has led to the
suggestion that small numbers are processed differently
from large numbers via subitizing, a process allowing for
their immediate and accurate recognition. Subitizing has
been proposed to depend on the system for representing
and tracking small numbers of individuals discussed
above [34], but this claim remains controversial [12,15].
An alternative explanation for the fast and accurate
enumeration of numerosities 1–4 is that, like larger
numerosities, they are represented by the first core
system, but that the variability in the read-outs of these
small numbers is sufficiently small that they can be

Figure 3. Infants’ choices in the experiment by Feigenson et al. [20]. Bars represent
the percentage of infants in each comparison group (at two different ages, 10 and
12 months, for the smaller quantities) choosing the greater quantity of crackers.
Infants’ choices demonstrate the set-size signature of the system for representing
small numbers of numerically distinct individuals (Core system 2), in that infants
performed randomly (dotted line at 50%) when either array contained more than 3
objects, even with highly discriminable ratios between the quantities. Asterisks
denote significance levels of P , 0.05. Adapted with permission from [20].
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• Feigenson et al. (2002):

• Keeping track of small numbers 
of individual objects
(“how many”)

– upper bound of 3: 
2 vs. 3, but not 3 vs. 4, 2 vs. 4 

– confused by continuous 
quantity (if 1 larger than 2) 

– multimodal abstraction
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• Shared heritage:

– pigeons

– rats

– rhesus-monkeys

• Cerebral basis: 

– system 1: IPS 

• lesions

• single-cell recordings

• brain imaging

– system 2:  ???

Non-humans & Cerebral Correlates

9

Lesion data concur with these findings. Many adult
patients with acalculia suffer from lesions in the IPS
vicinity. In particular, a subcategory of patients with
deficits in elementary operations such as subtraction,
bisection, or comparison seem to suffer more specifically
from a deficit of the numerical magnitude system [47,48].
Even simple non-symbolic tasks involving the enumer-
ation of large-number dot arrays can be impaired in such
patients [49]. Furthermore, early pathologies of this
system might cause developmental dyscalculia, a severe
deficit in learning arithmetic in otherwise normally
developing children. Loss of gray matter in the IPS has
been identified in two medical conditions associated with
dyscalculia: prematurity [50] and Turner’s syndrome [51].

In a crucial step towards elucidating the internal
organization of this system for representing approximate
numerosities, the first electrophysiological recordings of
number-related neurons in awake monkeys indicate the
existence of neurons tuned to approximate numerosity
(Figure 5) [52–54]. In a numerosity-matching task, for
instance, about a third of prefrontal neurons and up to 15%
of neurons in the depth of the IPS fired selectively after a
certain numerosity of dots was presented visually [52,53].
Furthermore, the neurons had identically short firing
latencies for all of the numerosities tested, indicating

parallel extraction of numerosity across the entire display,
and the faster latencies for IPS neurons than for prefrontal
neurons suggests that numerosity is first computed in
parallel in parietal cortex, then is transmitted and held on-
line by prefrontal delay activity [54].

Crucially, numerical tuning is approximate and is
broader for larger numerosities. The ratio signature of
Weber’s law is observed, with the breadth of the tuning
curves increasing linearly with the neurons’ preferred
numerosity. Mathematically, the tuning curves can be
described as Gaussians with a fixed width on a logarithmic
scale of number. This property, together with the lack of
any discontinuity between numbers below 3 and above 4,
associates this neural code unambiguously with the first
core number system. It provides evidence, moreover, that
this system can represent the magnitude of the smallest
numerosities as well as larger ones, at least in monkeys
that receive extensive training.

By contrast, the neural bases of the second core system
are not yet clear. In neuropsychological patients, rep-
resentations of small numbers are sometimes dispropor-
tionately spared relative to large numerosities [55,56].
And conversely, some children with developmental dys-
calculia show impairments to subitizing that are so severe
that the children had to count to assess the numerosity of
arrays of even 2 or 3 objects [57,58]. However, imaging of
the neural substrates of subitizing has proven inconclusive
[46], perhaps because this activity is a basic, automatic
function of early extrastriate areas [59]. Indeed, the
representation of distinct objects is so fundamental to
perception and cognition that it might elude current
neuroimaging methods, which work best when one can
devise control tasks in which the target system is not
activated.

Conclusion
Why is number so easy and yet so hard? Although studies
of human infants have not definitively answered this
question (see Box 2), they offer several suggestions. First,
number is easy because it is supported by core systems of
representation with long ontogenetic histories. One sys-
tem serves to represent approximate numerical magni-
tudes independently of non-numerical quantities. Because
this system is active early in infancy, humans are attuned
to the cardinal values of arrays from the beginning of
life. The other system serves to represent numerically
distinct individuals of various types, and allows multiple
computations over these representations. These compu-
tations include forming summary representations of the

Figure 5. Behavioral and neural numerical filter functions. (a) The behavioral per-
formance for two monkeys indicated whether they judged the first test stimulus (in
a delayed match-to-numerosity task) as containing the same number of items as
the sample display. The function peaks indicate the sample numerosity at which
each curve was derived. Behavioral filter functions are plotted on a logarithmic
scale. (b) Single-neuron representation of different numerosities in the prefrontal
cortex of the same behaving monkeys. Population neural filter functions were
derived by averaging the normalized single-unit activity for all neurons that pre-
ferred a given numerosity and transforming them to a logarithmic scale. Reprinted
with permission from [52].
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Box 2. Questions for future research

† What is the relationship between representations of large,
approximate numerosities and representations of small numbers
of numerically distinct individuals? Can information be transferred
from one core system to the other?
†What factors determinewhich representational system is deployed
in a given situation?
† How does each of the two core number systems contribute to the
creation of more sophisticated numerical knowledge?
† Do impairments to either core system lead to different types of
deficits in the development of mature number knowledge?
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Other “Evolutions”

• Cultural evolution, mediated by social interaction, 
language, writing, etc.

• Discovery & design of (mathematical) artifacts: 

– Notations:  symbols, number systems, formalisms

– Tools:  logarithms, calculating devices

• Intra-disciplinary evolution of mathematical ideas and 
formalisms

• Importance of the “right representations”...
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Representational Effects

• “Solving a problem simply means representing it 
  so as to make the solution transparent.” (Simon, 1996, p. 132)

• Are all deductive derivations ‘merely’ changes in 
representation?

• Example: Insight problems (e.g. mutilated chessboard, 
monk-mountain-problem...)

11

The solution to a problem changes the problem. 
Peer’s Law
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Demo:  Number Scrabble

• Rules: 

–∃(1, 2, 3 ... 9)

– 2 players alternate draws (w/o replacement)

– Goal:  Get 3 numbers that sum to 15 (asap)

• Game: 

– available:  1 2 3 4 5 6 7 8 9

– Player A:  

– Player B:  

12
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Demo:  Tic-Tac-Toe

• 3x3 grid:

• Two players (X vs. O) alternate moves

• Goal: Select 3 in-a-row 

13



Rensselaer Cognitive
Science

Problem Isomorphs
• Number Scrabble ⇄ Tic Tac Toe

• same problem space (state space, operators, start & 
goal states)

• informational equivalence, but computational 
differences (Simon, 1978; Larkin & Simon, 1987)

14

4 9 2

3 5 7

8 1 6
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Yet More Isomorphs...

• Fish-Soup: 

– (fish, soup, swan, girl, horn, army, knit, vote, chat)

– Goal: Select 3 words that share a letter

– Play at www.cut-the-knot.org/SimpleGames/SoupFish.shtml
15

fish soup swan

girl horn army

knit vote chat

http://www.cut-the-knot.org/SimpleGames/SoupFish.shtml
http://www.cut-the-knot.org/SimpleGames/SoupFish.shtml
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• The game of JAM (Michon, 1967):

– Network of 9 roads and 8 cities

– Goal:  Take all roads that pass through a city

– Play at www.cut-the-knot.org/SimpleGames/Jam.shtml

16

Yet More Isomorphs...

http://www.cut-the-knot.org/SimpleGames/Jam.shtml
http://www.cut-the-knot.org/SimpleGames/Jam.shtml
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Case Study 1:  Decimal Effects

• Neth & Payne (2001), Neth (2004): ‘Thinking by Doing’

• Task domain of mental arithmetic:

– easy to manipulate, well-defined and -researched

– traditionally ‘Platonic’ realm,  to be done ‘in-the-head’

• Hypothesis:  Not entirely ‘in the head’

– Notational effects

– Effects of tools & “digital manipulations”

17

“Environmental 
arithmetic”
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Mind Mechanics?
• Babbage’s Conundrum:

The most important part of the Analytical Engine was undoubtedly the 
mechanical method of carrying the tens.  On this I laboured incessantly, 
each succeeding improvement advancing me a step or two. (…)  At last I 
came to the conclusion that (…) nothing but teaching the Engine to 
foresee and then to act upon that foresight could ever lead me to the 
object I desired…
                 Charles S. Babbage (1864), Passages from the Life of a Philosopher, Ch. VIII

• Background Phenomena

1. Mental representation of number line

2. Notation of numerals:  ‘four’, IIII, IV, 4, ...

3. Arithmetic strategies: production vs. memory retrieval

4. Problem size effect

18
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Subitizing (Core System II)

• Demo: 1, 2, 3 vs. many

• Typical recognition latencies:

19
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The Mental Number Line

• Number comparison task (e.g., Moyer & Landauer, 1967):  

– 3 vs. 9 easier than 3 vs. 6 (distance effect)

– 13 vs. 19 easier than 43 vs. 49 (magnitude effect)

• Effects hold across species (rats, pigeons, humans...)

=> analogical quantity representation with increasing 
fuzziness

20



Rensselaer Cognitive
Science

Notations & Number Systems

• Different notations result in various trade-offs:

– odd or even:  binary > arabic > tally

– addition:  roman > arabic

– multiplication & division: arabic > roman 

• Note: informational, but no computational equivalence

21
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Methods & Strategies

• Three plus five? (Groen & Parkman, 1972; Siegler & Shrager, 1984)

– (1+1+1) + (1+1+1+1+1) → (1+1+1+1+1+1+1+1)  

– 3 + (1+1+1+1+1)

– 5 + (1+1+1)   ‘min’

– memory retrieval: 8

• Note: Characteristic traces in reaction times!

• Multiple strategies may co-exist (Siegler & Jenkins, 1989) 
and be used prior to conscious awareness (Siegler & 
Stern, 1997)

22
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The Problem-Size Effect

• Basic finding (e.g., Campbell, 1995; Zbrodoff, 1995; Geary, 1996):  
Problems with smaller sums (products) are solved 
faster, e.g., ‘4+5’ slower than ‘4+3’ 

• Explanations are controversial: strategies vs. 
representation

• Averaging over different strategies may obscure or 
inflate effects, e.g., decomposition of 6+7 into (6+4)+3 
or retrieval vs. counting depending on operands 
(Siegler, 1987; LeFevre et al., 1996)

23
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Hindu-Arabic Decimal System

• Economy: 9 digits (denoting magnitude) & simple rules

– position represents a digit’s order of magnitude

– special symbol (0) denoting the vacancy of a position

=> numbers as abbreviated polynomials:
     
      960410 = 4·100 + 0·101 + 6·102 + 9·103

• Why 10?  Anatomical accident? (See Ifrah, 1994/2000, 
for alternatives & advantages of base-11 and base-12 ...)
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Exp. 1:  Serial Addition

• Terminology:       u      +     a      =   s
                     augend     addend     sum

• Task analysis yields 4 addition types:

25
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A Serial Addition Paradigm

• Task:  Sequentially adding a list of single-digit addends 

26

4    8    3   5    2    6  …

=> intermediate sums:  4  12  15  20  22  28  …

Addition types:  –   >   <    o   –    <  …

Presentation: 1 addend at a time; press key to see 
next addend
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Materials & Procedure

• 20 participants each added a unique set of 30 ‘random’
(but constrained) lists of 4–6 single-digit addends:

– 10 lists with no complements, e.g.    2 9 5 6 2 5

– 10 lists with one complement:         2 9 4 5 3 6

– 10 lists with two complements:        2 9 4 5 3 7 

• Participants instructed to add as quickly as possible and 
enter the result upon a prompt.

• Tacit re-presentation of erroneous trials 
=> 30 correct lists/participant

27
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Hypotheses

• List level: 
Facilitation by complements, i.e., lists with more 
complements are added more quickly and/or elicit 
fewer errors

• Addition level: 
Decade effects, i.e., addition types 
[–] and [o] are added faster than [>] and [<]

28
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Results:  List Level
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Results:  Addition Level
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Caveat:  Are types confounded with problem size?
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Problem Size Effects?

=> Problem size effects within addition types [<, o, >]

31



Rensselaer Cognitive
Science

Exp. 1: Discussion of Results
• Notational (decimal) effects:

– Lists containing complements are added faster & more 
accurately

– Double-benefit: [o] and [+] both faster than [<] and [>] 

• Note: Intermediate sums were not written in any notation 
(presumably represented verbally?)

• Questions:

– How evolved? (Instruction vs. adaptation vs. side effect 
of frequent decomposition)

– Actively sought when given a choice? 

32



Rensselaer Cognitive
Science

Exp. 2:  Serial Addition of Pairs

• Paradigm:  As before, but 2 simultaneous addends
=> some discretion about the order of operations 

33

x + a1 + a2  =  (x + a1) + a2     linear sequence

x + a1 + a2  =  (x + a2) + a1     commutativity

x + a1 + a2  =  x + (a1 + a2)     associativity
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Exp. 2:  Addition Types

34

• New (facilitative?) addition types:

Covert complements: 
a) 15 + 2+3  [<o] 
b) 18 + 5+7  [>o]

Overt complements: 
a) direct: 
 15 + 5+4
b) indirect: 
15 + 4+5
c) pair:       12 + 6+4
d) direct complement-pair:    14 + 6+4
e) indirect complement-pair: 
14 + 4+6
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Exp. 2:  Results & Discussion

• Facilitative effects of (overt & covert) complements:

– little impact of addend order

– large effects of opportunity

• Again:  Effects of notation on mental processes

• Adders adaptively use minute differences in difficulty 
to adjust the order of their operations.

• Question:  Other ‘external’ influences? 

35
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Exp. 3:  Interactive Addition

• “Digital calculations”:  People routinely manipulate 
symbols (with hands, pencils, etc.)

• Paradigm:  Adding lists of addends or sets of coins

36
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Example:  Write-to-mark & -tally
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Example:  Write-to-mark/add/store/...
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Case Study 1:  Conclusions

• Notation (external representation) affects mental operations 
and overt behavior

• Strategies observed depend on (availability, costs and benefits 
of) interactive resources (tools)

• Adaptive tool use:  Type and amount of tool usage 
is sensitive to agent skills, task properties and usage costs

39

Agent

Agent: representations, 
          skills, goals, ...

Task Tools
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Case Study 2:  Space Between Symbols

• Landy & Goldstone (2007a, b, c):  The Alignment of 
Ordering and Space in Arithmetic Computation

• Examples:  2 + 4 × 7  and  2 × 4 + 7

– formal properties:  meaning of symbols, syntax rules

– accidental properties: font, color, similarities, spacing, ... 

• Hypotheses:

1. operator feature hypothesis:  spacing > operator selection

2. proximity-precedence alignment hypothesis:  closer objects 
are  combined first (consistent vs. inconsistent vs. neutral)

3. expression reading hypothesis:  ×+ easier than +×

40
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Case Study 2:  Method

• Materials:  a×b+c and a+b×c for a, b, c = 2, 3, 4

• 3 spacing conditions:

– even:            a × b + c     a + b × c

– narrow-first:  a×b + c     a+b × c

– wide-first:      a × b+c     a + b×c

• Task: Calculation as fast as possible; self-paced.

41
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Results:  Latency
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a×b+c a+b×c
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Results:  Accuracy
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a×b+c a+b×c
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Results:  Specific Errors

44

• Error Types:

– operator confusion

– operand errors

– precedence errors

• 549 of 971 errors 
could be classified



Rensselaer Cognitive
Science

Case Study 2:  Conclusions

• Physical properties of notations matter.

• Specifically, spatial layout has various effects, e.g., alignment 
of spacing with meaning affects task difficulty 
(even if expression is parsed correctly!)

• Different levels:

– space affects interpreted meaning of symbols

– spatial proximity suggests operator preference

– cultural & perceptual-motor constraints: left-right order 

• Genesis:  Universal laws vs. familiarity with conventions?
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Case Study 3: Strategy Shifts

• Siegler & Stern (1998):  Conscious and Unconscious 
Strategy Discoveries:  A Microgenetic Analysis

• Population:  2nd graders (8–9 years)

• Microgenetic method:  

– High density of observations in key phases

– implicit vs. explicit measures (latency vs. verbal report)

• Inversion task:   a + b – b    ‘arithmetic insight problem’

– non-trivial for 1st-4th graders (<50% shortcuts)

– use of shortcut requires knowledge and recognition
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Strategies and Correlates

47

• What’s 18 + 5 – 5?

• Method: 

– 8 sessions:  pretest | 6 practice sessions | transfer
mixed vs. 
blocked

a+b–b
a–b+b
a+b–a
a–b–a etc.
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Results:  Strategy Uses by Session

48



Rensselaer Cognitive
Science

Results: Strategy Shift Sequences
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Conclusions
• Strategy discovery preceded conscious awareness:

– 90% showed implicit insight before explicit report of 
shortcut strategy

– 80% reported insight within 5 trials of its 1st use 

• Persistence of immature strategies

– An adaptation to changing environments?

• Questions:

– Generality of unconscious strategy discovery?

– Mechanism of conscious awareness? 

• A methodological marvel!
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Mathematics at Work

• Mathematics as human practice: trained routines, embedded 
in contexts, pursuing goals, subject to constraints ...

• Areas & inspirations:

– Prodigies: Continuum or qualitative leaps?

– Expertise research: Deliberate practice and routines

• Researching expertise: How mathematics is done?

– Tools & devices:  Notations, diagrams, proof strategies ...

– Methods:  Verbal protocols, cognitive modeling, brain imaging ...

51

It is a moot point whether the human hand created the human brain, or the 
brain created the hand. Certainly the connection is intimate and reciprocal. 
                                                                                          A. N.  Whitehead 



Rensselaer Cognitive
Science

The Case of Prodigies

• Romantic anecdotes of ‘geniuses’, ‘idiot savants’, etc. 

• e.g., Hardy & Ramanujan’s 1729 

• Galton’s (1869) ‘hereditary genius’: 
        capacity, zeal, and very hard work

• De-mystifications:

– deliberate training (sometimes pathological)

– intricate familiarity with facts & methods

– continuum with normal controls, 
but genuine adaptations 
(e.g., body & brain plasticity, 
 LTWM...)

52

= 13+123 = 93+103

news and views

nature neuroscience  •  volume 4  no 1  •  january 2001 11

Until now, almost nothing was known
about the neural basis of exceptional cog-
nitive ability. In a pioneering study in this
issue, Pesenti and colleagues have now
used functional brain imaging to exam-
ine the calculating prodigy Rüdiger
Gamm, and to compare his brain activi-
ty with that of normal control subjects as
they perform mental arithmetical calcu-
lations1. Gamm is remarkable in that he
is able (for example) to calculate 9th pow-
ers and 5th roots with great accuracy, and
he can find the quotient of 2 primes to 60
decimal places. The authors found that
Gamm’s calculation processes recruited a
system of brain areas implicated in
episodic memory, including right medial
frontal and parahippocampal gyri, where-
as those of control subjects did not. They
suggest that experts develop a way of
exploiting the unlimited storage capacity
of long-term memory to maintain task-
relevant information, such as the sequence
of steps and intermediate results needed
for complex calculation, whereas the rest
of us rely on the very limited span of
working memory2.

It is widely assumed that human work-
ing memory is a temporary mechanism
for maintaining information related to the
task at hand in visual and speech-based
buffers. (The speech-based buffer needs
rehearsal for maintenance.) Estimates
based on immediate serial recall put the
maximum average capacity of this buffer
as 7 ± 2 unrelated items (for example, a
string of digits or words)3. Furthermore,
functional brain imaging has established
that speech-based storage involves the
perisylvian language areas4.

However, the kinds of calculation that
Gamm is able to carry out accurately and
quickly involve a sequence of steps and
intermediate results well beyond the
capacity of working memory. Like other
calculating prodigies5, Gamm has taught

healthy non-expert controls of similar age)
carried out complex calculations. The
authors’ hypothesis was that only Gamm
would make use of long-term memory to
store task-relevant information, and would
thus activate brain structures implicated in
the storage and retrieval of episodic mem-
ories. However, it was by no means obvi-
ous that a very high level of cognitive skill
would necessarily invoke additional brain
areas. Alternatively, the same areas that are
active in normally skilled people could be
more active in experts, or the same area
could be somewhat extended (as is the case
with musicians9 or braille readers10). High
skill could also mean that less brain activi-
ty is needed to carry out the same task11.

It turned out that computation (com-
pared to retrieval of memorized number
facts) led to activation of an extensive
bilateral visual processing system in both
Gamm and the controls. According to the
authors, this suggests that “during com-
plex calculation, numbers are held and
manipulated onto a visual type of short
term representational medium.” This con-
trasts with the more usual claim that “sub-
vocal rehearsal is ... required for mental
arithmetic”12, but it may explain an earli-
er result showing that a brain-damaged
patient could reliably add two three-digit
numbers even though his digit span was
reduced to two13. Several other areas were
also specifically activated in both non-
experts and Gamm during calculations,
including areas identified in previous stud-
ies of non-expert subjects14. Complex

himself an enormous store of number
facts. Most of us know our multiplication
tables, and perhaps 50 simple additions6,
but Gamm has learned tables of squares,
cubes and roots, among others. Similarly,
Gamm has an enormous store of proce-
dures and short-cuts that allow him to
solve multi-step problems very quickly
and accurately. For example, to solve 
68 ! 76 takes seven steps and six interme-
diate results. After some practice with the
task, Gamm was taking about five seconds
per problem—with a high degree of accu-
racy. Two-digit squares, by contrast, took
him just over a second because they were
simply retrieved from memory.

Such a sequence of operations and data
handling would put a considerable strain
on normal working memory, yet many
types of experts show increased capacities
for the temporary storage of task-relevant
materials. For example, musicians can recall
tunes after a single hearing, and expert wait-
ers can keep in mind the precise orders for
up to 20 people without writing them down
(at least until the customer has paid).
Experts develop a kind of ‘long-term work-
ing memory’ (LTWM), which is a domain-
specific episodic memory. Thus, despite
their other talents, the musician and the
waiter score normally on tests of digit span,
for example2. Similarly, whereas Gamm had
a forward span of 11 digits (controls, 7) and
12 digits backward (controls, 6; ref. 7), his
letter span was in the normal range. Lan-
guage processing is perhaps a more famil-
iar example of the ability to retain
information beyond the span of short-term
working memory. We can effortlessly retain
meaningful sentences of 20 words or more,
well beyond the span for unrelated words
(about six) or words not in our language
(about three). Several related accounts of
this phenomenon propose cues in working
memory for retrieving well-organised
domain-specific information in long-term
episodic memory8.

Pesenti and colleagues now argue that
Gamm has learned to use this LTWM facil-
ity to maintain task-related mathematical
information. They used PET to study mea-
sure brain activity while Gamm (and six

What makes a prodigy?
Brian Butterworth

A PET study measures brain activity during calculation in a
prodigy and non-experts. Unlike the controls, the prodigy
showed activation in areas involved in episodic memory.

The author is in the Institute for Cognitive
Neuroscience, Department of Psychology,
Alexandra House, 17 Queen Square, 
WC1N 3AR London, UK.
email: b.butterworth@ucl.ac.uk

Fig. 1. Top-down view of the brain showing
areas that are active in six non-expert calcu-
lators as well as Gamm (green), and areas
that were specifically active in Gamm (red)1.
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Researching Expertise

• ‘Expert’ := ~10+ years of domain experience

• Domains:  Math, Chess, Physics, Music, Waiting, Gaming…

• Experts exhibit better (faster & more accurate) problem 
solving.  Questions:

– Innate talent vs. practice?

– Same or different mental processes?

• Ericsson et al. (1993, 1994):  Deliberate practice, 
zeal & organizational talent => adaptations
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Experts vs. Novices
• Experts have

– more knowledge (doh!)
e.g., human calculators know squares, cubes, roots of integers; 
Chase & Simon’s (1973) chess studies

– differently organized knowledge
e.g., Chi et al. (1981): 
Categorizing problems 
based on surface vs. 
structural similarities
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Experts vs. Novices (cont’d)

• Experts...

– use different solution strategies 
(e.g. backwards reasoning;  chunking & STM/LTM associations 
for 79-digit span, Ericcson et al., 1980)

– Spend more time analyzing, rather than solving a problem 
(Paige & Simon, 1966)

– But Caveats: Expertise... 

• is domain-specific.  Voss et al. (1983): 
Poor transfer of expertise

• can result in functional fixedness 
(= blindness to creative alternatives)
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Case Study 4: Geometry Proofs

• Koedinger & Anderson (1990):  Abstract planning and 
perceptual chunks: Elements of expertise in geometry

• Diagram Configuration (DC) model, based on earlier 
geometry tutors

• Assumptions: Geometry experts

– focus on key steps, skip intermediate ones,

– parse diagrams into perceptual chunks, and

– reason on the basis of schematic diagram 
configurations 
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Example Task & Proof
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514 KOEDINGER AND ANDERSON 

TABLE 1 

A Verbal Protocol for o Subject Solving Problem 3 

Plonning Phase 

Bl: We’re given a right ongle-this is a right angle, Reading given: rt LADB 

62: perpendicular on both sides [makes perpendicular Inference step 1: AClED 

markings on diogram): 

63: BD bisects angle ABC [marks angles AED and CBD] Reading given: BD bisects LAN 

84: and we’re done. Inference step 2: LlABDz @,CBD 

Execution Phase 

65 We know that this is o reflexive [marks line BD], In this phase. the subject 

86: we know thot we hove congruent triangles: we refines and exploins his 

can determine anything from there in terms of solution to the experimenter. 

corresponding ports 

87: and that’s what this [looking ot the gool statement 

for the first time] is going to meon. . . that these 

ore congruent [marks segments AD and DC as 

equal on the diagram]. 

model of students and a component of an intelligent tutoring system. The 
Geometry Tutor expert (GTE) used an opportunistic or best-first bidirec- 
tional search strategy in the execution space and used various contextual 
features as heuristics for predicting the relevance of an operator. (We review 
these systems and a few others in Section 5.) While GTE provided a reason- 
ably good model of students, as evidenced by the success of the Geometry 
Tutor (Anderson, Boyle, Corbett, & Lewis, 1990), we found that the mode 
of attack by human experts was distinctly different from that of GTE. It 
seemed important to be able to characterize this expertise both as a goal in 

and of itself, and for pedagogical purposes. 

2. EXPERT HUMAN PROBLEM SOLVING 

2.1 Step Skipping and Abstract Planning 
One feature that distinguishes geometry experts is that they do not make all 
the steps of inference that students do while developing a solution plan. 
Consider the protocol in Table 1 of an expert (Subject R) solving Problem 3 
shown in Figure 1. The left side of the table contains the protocol and the 
right side indicates our coding of the subject’s actions. 

This expert had a reliable solution sketch for this problem in 13 seconds 
at the point where he said, “we’re done.” He plans this solution sketch 
without looking at the goal statement (more on this curious behavior in Sec- 
tion 4.3) and in the remainder of the protocol he elaborates the solution 
sketch, reads the goal statement, and explains how it is proven. His words 
“we’re done” indicate his realization that the two triangles ABD and CBD 
are congruent and that therefore he knows everything about the whole 
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Figure 1. Geometry problems given to subjects and solved by DC. 

We call it the execution space of geometry because the operators correspond 
with the steps that a problem solver writes down in the solution of a problem. 

As illustrated above, the geometry execution space is enormous. In the 
DC model described below, we achieve search control by initially planning a 
solution sketch in a problem space that is more abstract, that is, more com- 
pact, than the execution space. In contrast, the traditional approach has 
been to look for better search strategies and heuristics to use within the 
execution space. Gelernter’s (1963) geometry theorem proving machine used 
a backward search strategy in the execution space and used the diagram as a 
pruning heuristic. More recently, the second author and colleagues (Ander- 
son, Boyle, & Yost, 1985) built a geometry expert system as a cognitive 
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Expert’s Step Skipping & Abstraction
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GIVENS: 

GOAL: D midpo’nt of a 
i 

CORRES-PARTS 

rt L AD8 BD bisects f ABC 

Figure 2. The final solution for Problem 3. The givens of the problem are at the bottom and 

the gool is at the top. The lines represent inferences with the conclusion at the arrow head, 

the premises ot the tails, and the justifying geometry rule ot the dot in between. The state. 

ments Subiect R mentioned during planning (see Table 1) ore numbered while the ones he 

skipped are circled. 

problem. As he explains later, “we can determine anything from there in 
terms of corresponding parts.” 

Figure 2 shows the solution to the problem in the proof tree notation of 
the Geometry Tutor. Apart from the givens and goal, the statements which 
the expert mentioned while solving this problems are numbered in Figure 2, 
and the skipped steps are circled. Assuming this expert’s verbalizations accu- 
rately reflect his working memory states (Ericsson & Simon, 1984), we con- 
clude that the expert only makes certain key inferences in his search for a 
solution while skipping other, apparently minor inferences. 

2.1.1. Absrruction. In the terminology of the problem-solving literature, 
it seemed clear that experts were initially planning their proof in an abstract 
problem-solving space (Newell & Simon, 1972; Sacerdoti, 1974; Unruh, 
Rosenbloom, & Laird, 1987). They were ignoring certain distinctions, such 
as the distinction between congruence and equality, and they were skipping 
over certain kinds of inferences, particularly the algebraic inferences. It 
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Figure 1. Geometry problems given to subjects and solved by DC. 

We call it the execution space of geometry because the operators correspond 
with the steps that a problem solver writes down in the solution of a problem. 

As illustrated above, the geometry execution space is enormous. In the 
DC model described below, we achieve search control by initially planning a 
solution sketch in a problem space that is more abstract, that is, more com- 
pact, than the execution space. In contrast, the traditional approach has 
been to look for better search strategies and heuristics to use within the 
execution space. Gelernter’s (1963) geometry theorem proving machine used 
a backward search strategy in the execution space and used the diagram as a 
pruning heuristic. More recently, the second author and colleagues (Ander- 
son, Boyle, & Yost, 1985) built a geometry expert system as a cognitive 
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Diagram Configuration Schemas
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:ONGRUENT-TRIANGLES-SHARED-SIDE 

Configuration: X 

Y 

ab 
z 

W 

Wholestatement: 4kxYw 3 ~xzw 

Part-statements: 1. R q FF 

2.w=Ei 
3.LY=LZ 

4. LYXW = LZXW 

5.LXWY-LXW2 

ways-togrove: (I 2) (1 4) (2 5) 

(4 S) (3 4) (3 5) 

PERPENDICULAR-ADJACENT-ANGLES. 

Contiiuration: N 

A- 
L P M 

Wholestatement: Ft I* 

Part-statsmems: 1. rt LLPn 

2. rt LMPN 
3. L LPN = LMPN 

Ways-toprove: (1 I (21 (3) 

Flgure 3. Two examples of diogrom configuration schemes. The numbers in the woys-to- 

prove indicate port-stotements. Thus, in the CONGRUENT-TRIANGLES.SHARED.SIDE schema (1 2) 

means that if the part-statements XY = XZ and YW=ZW ore proven, 011 the statements of 

the schema can be proven. 

whether inferences can be made about a configuration. They indicate sub- 
sets of the part-statements which are sufficient to prove the whole-statement 
and all of the part-statements. For example, the first way-to-prove of the 
COI\IGRUENT-TRIANGLES-SHARED-SIDE schema, {12}, indicates that if the 
part-statements AB = AC and BD = CD have been proven, the schema can 
be proven; that is, all the other statements of the schema can be proven. 

Our basis proposal is that planning is done in terms of these schemas 
rather than the statements of geometry. The’problem solver tries to establish 
that various schemas are true of the diagram. Establishing one schema may 
enable establishing another. Because there are a small number of schemas 
possible for any particular problem diagram, the search space of schemas is 
much smaller than the execution space. 

Consider Problem 3 and the expert protocol in Table 1. In the planning 
phase, the subject made four verbalizations. Of these four verbalizations, 
two indicate his reading and encoding of the given statements and two indi- 
cate inferences. Essentially, the subject solved the problem in two steps. In 
contrast, the complete execution space solution (see Figure 2) requires seven 
geometry rule applications. In other words, a problem solver who was plan- 
ning in the execution space would take at least seven steps to solve this prob- 
lem. DC’s solution to this problem, like the subject’s, is much shorter: It 
involves only two schemas. An instance of the PERPENDICULAR-ADJACENT- 

ANGLES schema can be established from the givens of the problem, while an 
instance of the TRIANGLE-CONGRUENCE-SHARED-SIDE schema can be estab- 
lished as a result. We now describe the processes DC uses to recognize and 
establish schemas. 
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DC’s Processing Components

• Planning & search through space of diagram 
configurations, rather than axioms of geometry

• Processing components:

– Diagram parsing → Schema instantiation

– Statements encoding: given- & goal-statements

– Schema search: forward or backward inferences
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Diagram Parsing & Schema Instantiation

• Note:  Perceptual processes are not modeled!
61

ABSTRACT PLANNING AND PERCEPTUAL CHUNKS 521 

Figure 4~. The diagram configurations for geometry up to and including the topic of triangle 

congruence. The configurations in rectangles are basic configurations which can be recag 

nixed immediately in problem diagrams. The other configurations are specializatians af 

these in which certain relationships appear to hold among the parts af the configuration. 

DC uses the low-level object information to recognize instances of the 
basic configurations. The other configurations are either specializations of 
the basic ones (and thus are attached below them in Figure 4a) or speciahza- 
tions of pairs of basic configurations (see Figure 4b). To recognize possible 
specializations, DC uses the segment and angle size approximations to check 
whether any of the basic configurations have the necessary properties to be 
specialized. For example, to recognize the ISOSCELES-TRIANGLE configura- 
tion, DC checks the triangles it has identified to see if any have two equal 
sides. 

DC’s diagram-parsing algorithm corresponds with a very powerful visual 
process in humans. We make no claims that the internals of this algorithm 
match the internals of the corresponding human process. For instance, 
while it is quite likely that human perceptual processes make extensive use 
of symmetry in recognizing geometric images, DC makes no use of symmetry. 
We do claim that human experts are capable of recognizing these configura- 
tions and make extensive use of this ability in solving proof problems. 

‘basic 
configurations’
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Proof by Recognition & Search...

• Note: 95% is done in phase 1 (schema instantiation)...
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Figure 5. DC’s solution space for Problem 3. The schemes DC recognizes during diogrom 

parsing ore shown in the boxes. The lines indicate the port-statements of these schemes. A 

solution is achieved by finding a path from the givens to the goal satisfying the constraints 

of the ways-to-prove slot of the schemes used. 

First, if the given/goal statement is one of a number of alternative ways 
of expressing the same part-statement, it is encoded in terms of a single 
abstract or canonical form. For example, measure equality and congruence, 
as in mAB = mBC and ABm BC, are encoded as the same part-statement. 
Using this abstract representation, DC avoids inferences, required in the 
execution space, that establish the logical equivalence of two alternative 
expressions of the same fact. 

Second, if the given/goal statement is the whole-statement of a schema, 
it is encoded by appropriately tagging all of the part-statements of that 
schema as “known” in the case of a given or “desired” in the case of a goal. 
For example, the second given of Problem 3, BD bisects LABC, is the whole- 
statement of a BISECTED-ANGLE schema. DC encodes it by establishing its 
only part-statement LABD=LCBD as known (see Figure 5). Similarly, 
DC encodes the goal statement of Problem 3 by tagging the part-statement 
AD = CD as desired. 

3.2.3 Schema Search. Based on its parsing of the diagram, DC identifies 
a set of diagram configuration schemas which are possibly true of the prob- 
lem. Its agenda then becomes to establish enough of these schemas as true 
so that the goal statement is established in the process. Typically, one of the 
ways-to-prove of a schema can be established directly from the encoded 
givens. So, for instance, in Problem 3 the PERPENDICULAR-ADJACENT- 

ANGLES schema can be concluded immediately. Other schemas require that 
additional statements be established about the diagram in order to conclude 
them.Thus,itisonly afterthe PERPENDICULAR-ADJACENT-ANGLES schema 
is established in the example problem that the TRIANGLE-CONGRUENCE- 

SHAPED-SIDE schema can be established. At this level, DC is performing a 
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Model Evaluation

• Combinatorial analysis:

– higher ‘effectiveness’ (smaller search space) than 
alternative models 

• Empirical evaluation:

– N=8 (Geometry teacher, researchers, grad students)

– Method:  Verbal protocol analysis (Ericsson & Simon, 1984)
& proof tree diagrams

– Verbalization assumption: One verbalization per schema 
application

63
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TABLE 3 

Model-Data Fit for All Subiects Solvinq Problem 7 

Predicted Mention Predicted Skip 

Actually Actually Actually Actually 

Subject Mention Skip Mention Skip 

R 3 0 3 2 

B 2 0 I 3 

K 3 0 1 6 

J 2 0 1 3 

F 3 2 3 9 

Total 13 2 9 23 

TABLE 4 

Model-Data Fit for Subiect R Solving Eight Problems 

Prob. No. 

Predicted Mention 

Actually Actually 

Mention Skip 

Predicted Skip 

Actually Actually 

Mention Skip 

1 

2 

3 

4 

5 

6 

7 

a 

Totol 

1 

1 

2 

2 

3 

3 

0 

13 

1 

3 

4 

5 

8 

2 

2 

9 

34 

4.2.3 Model Predictions. We derive predictions from DC by assuming that 
a statement will be mentioned for each schema application. If the schema has 
a whole-statement, we predict that this statement will tend to be mentioned. 
If it does not contain a whole-statement, for example, like the WHOLE-PART 

schemas, we predict the concluding part-statement will tend to be mentioned. 
We predict that all other statements will tend to be skipped. This prediction 
entails a quite simple assumption about the verbalization of problem states, 
that is, one verbalization per schema application, however, it provides a 
good fit to the data. Below we discuss how the major difference between the 
predictions and the data might be accounted for by a slightly more complex 
assumption about verbalization. 

4.2.4 Results and Discussion. In the 12 subject-problem pairs, fewer 
than half of the intermediate steps were mentioned (37/98) and more were 
skipped (61/98). The model predicted that 29 steps would be mentioned and 
69 skipped. Tables 3 and 4 show the data for each subject-problem pair and 
will be discussed below (note that Subject R, Problem 7 is in both tables). 
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Discussion & Conclusion

• Very efficient & good fits to expert behavior.

• The power of representation...

• But: Side-stepping phenomenon (by ‘explaining it away’)?

– No explanation of knowledge acquisition:
(DCs, declarative → procedural)

– Perceptual processes not modeled

– Note parallels to models of human reasoning
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Mathematical Skills

• Mathematical learning:  training & skill acquisition

• Mathematics as “problem solving” 
(:= what we do when we don’t know what to do)

• Components

– representation (states)

– memory for facts vs. procedures 
(knowledge & operators)

– control strategies: maintaining goal hierarchies, 
minimizing memory load etc.
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Case Study 5:  Algebra & ACT-R

• Anderson (2005): Human Symbol Manipulation Within 
an Integrated Cognitive Architecture
(see also Anderson, 2007)

• Task domain:  Simple algebra expressions, e.g. 7x+3=38

• ACT-R (“adaptive control of thought-rational” analysis)

– comprehensive psychological theory (architecture)

– programming language for cognitive modeling

– framework to organize thought

67



Rensselaer Cognitive
Science

Modules & Buffers

• Modules:

– visual
– manual
– procedural
– declarative
– imaginal
– control (goal)

• massive parallelism within 
modules

• communication via buffers

– contain 1 ‘chunk’
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framework of the ACT–R theory. Such comparative analyses relate to issues of brain realiza-
tion, and this article also describes the preliminary mapping of components of the ACT–R the-
ory onto brain regions. This mapping has enabled the use of functional MRI (fMRI) data to in-
form theory development.

2. The ACT–R architecture

According to the ACT–R theory, cognition emerges through the interaction of a number of
independent modules. Fig. 1 illustrates the modules relevant to algebra equation solving:

1. A visual module that might hold the representation of an equation such as 3x – 5 = 7.
2. A problem state module (sometimes called an imaginal module) that holds a current

mental representation of the problem. For instance, the student might have converted
the original equation into 3x = 12.

3. A control module (sometimes called a goal module) that keeps track of one’s current in-
tentions in solving the problem—for instance, one might be trying to apply the unwind
strategy described later.

4. A declarative module that retrieves critical information from declarative memory such
as that 7 + 5 = 12.

5. A manual module that programs the output such as x = 4.

Each of these modules is capable of massively parallel computation to achieve its objec-
tives. For instance, the visual module is processing the entire visual field and the declarative
module searches through large databases. However, each of these modules suffers a serial bot-
tleneck such that only a little information can be put into a buffer associated with the mod-
ule—a single object is perceived, a single problem state represented, a single control state

314 J. R. Anderson/Cognitive Science 29 (2005)

Fig. 1. The interconnections among modules in ACT–R 5.0.

central

peripheral
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• Declarative knowledge:  facts

– represented as structured chunks

• Procedural knowledge:  productions

– test buffer contents, ‘pattern matching & manipulation’

– serial bottleneck (50msec) 

• Symbolic vs. sub-symbolic components:
structures vs. activations/utilities

Knowledge Representation
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maintained, a single fact retrieved, or a single program for hand movement executed. Formally,
each buffer can only hold what is called a chunk in ACT–R, which is a structured unit bundling
a small amount of information. ACT–R does not have a formal concept of a working memory,
but the current state of the buffers constitutes an effective working memory. Indeed, there is
considerable similarity between these buffers and Baddeley’s (1986) working memory “slave”
systems.

Communication among these modules is achieved via a procedural module (production sys-
tem in Fig. 1). The procedural module can respond to information in the buffers of other mod-
ules and put information into these buffers. The response tendencies of the central procedural
module are represented in ACT–R by production rules. For instance, the following might be a
production rule for transforming an equation:

IF the goal is to solve the equation
and the equation is of the form Expression – Number1 = Number2
and Number1 + Number2 is Number3 has been retrieved

THEN transform the equation to Expression = Number3

This production responds when the control chunk encodes the intention to solve an equa-
tion, as shown in the first line; when the problem state chunk represents an equation of the ap-
propriate type—second line—for example, 3(x – 2) – 4 = 5; when a chunk encoding an arith-
metic fact has been retrieved from memory—see third line—in this case 4 + 5 = 9; and
appropriately changes the problem representation chunk—see fourth line—in this case to 3(x –
2) = 9.

The procedural module is also capable of massive parallelism in sorting out which of its
many competing rules to fire, but like the other modules it has a serial bottleneck in that it can
only fire a single rule at a time. Because it is responsible for communication among the other
modules, the production system comprises the central bottleneck (Pashler, 1994) in the
ACT–R theory. Therefore, cognition can be slowed when there are simultaneous demands to
process information in distinct modules. As already noted, the other modules themselves can
also be bottlenecks. All of the bottlenecks are in the communication among modules; within
modules things are massively parallel. (Fig. 3, later in the paper, illustrates in some consider-
able detail how this parallelism and seriality mix.) Documenting the accuracy of this character-
ization of human cognition has been one of the preoccupations of research on ACT–R (for in-
stance, Anderson, Taatgen, & Byrne, 2004).

In addition to the overall flow of control, major concerns of ACT–R involve the “internal
components” (declarative memory, production memory, control state, and problem state).
With respect to peripheral modules (and ACT–R has more than just the visual and manual
modules represented here) we have been content to implement approximations that capture the
major results documented in the literature. Indeed, much of ACT–R’s perceptual–motor sys-
tem is a reimplementation of Executive-Process Interactive Control’s (EPIC; Meyer & Kieras,
1997) perceptual–motor system. Following EPIC’s lead we have found that we cannot under-
stand central cognition unless we have reasonably accurate models of its interface with the ex-
ternal world. For a substantial fraction of the ACT–R community, particularly those concerned
with human–computer interaction issues, this perceptual–motor system is critical.

J. R. Anderson/Cognitive Science 29 (2005) 315
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Method

• Participants:  10 students (11–14 yrs.)

• Sample tasks:

• Instruction & 5 days, 10 x 16 trials per day

• Model predictions vs. empirical data vs. brain imaging
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this form but can be simplified so that they are in the appropriate form. The model in this article
assumes that the equations are already in a form to which the unwind strategy can immediately
apply. The earliest instruction on equation solving tends to focus on such problems and teaches
students the justifications for these transformations as well as providing practice on how to
perform them, although students are typically not taught to think of this as a general unwind
strategy but rather as a series of more specific operations. We have found, however, that begin-
ning students are quite capable of understanding the general unwind principle and its justifica-
tion and can use it with its full generality.

In the experiment to be modeled in detail (Qin et al., 2004) 10 students ages 11 to 14 spent 6
days practicing solving such equations. The first day (Day 0) they were given private tutoring
on this class of equations, using the unwind principle, and practiced paper and pencil solutions
of such problems with a private human tutor. On the remaining 5 days they practiced on a com-
puter the solution of three classes of equations:

0-step: e.g., 1x + 0 = 4 (5)

1-step: e.g., 3x + 0 = 12, 1x + 8 = 12 (6)

2-step: e.g., 7x + 1 = 29 (7)

Each day they went through 10 computer-administered blocks of such equations. Each
block consisted of 16 trials with four instances of the four possible types of equations (there are
two subtypes for the 1-step equations). Fig. 2 presents their latency and the predictions of a
model that will now be described.

318 J. R. Anderson/Cognitive Science 29 (2005)

Fig. 2. Mean solution times (and predictions of the ACT–R model) for the three types of equations as a function of
delay. Although the data were not collected, the predicted times are presented for the practice session of the experi-
ment (Day 0).
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was originally done by multiple production rules. In this situation the initial instruc-
tion-following productions are compiled over time to produce productions to embody proce-
dures that efficiently solve equations. For instance, the following production rule is acquired:

IF the goal is to unwind an expression
and the expression is of the form “subexpression + 0”

THEN focus on the subexpression

Fig. 3a illustrates a typical trial at the beginning of Day 1, and Fig. 3b illustrates a typical
trial at the end of Day 5. In both cases the model is solving the 2-step equation, 7*x + 3 = 38.
The figure illustrates when the various modules were active during the solution of the equation
and what they were doing. The Day 1 trial (Fig. 3a) takes 6.1 sec and the Day 5 trial (Fig. 3b)
takes 4.1 sec. However, these do not reflect the extremes of the learning curve according to
ACT–R. The very first trial on Day 0 takes 8.4 sec in the model. With an infinite amount of
practice, the model would take 1.7 sec during which it would only read the equation and type
the answer, having compiled the answer into production rules for that problem. Still, the con-
trast between parts a and b of Fig. 3 gives a sense for what is happening over the course of
learning. It is worth emphasizing a number of general features of the activity in the figure be-
fore discussing the detail of what is happening in individual buffers:

Multiple modules can be active simultaneously. For instance, early on in Fig. 3 there is a
point where the goal module is noting that it is implementing the unwind strategy, an image of
the right-hand side of the equation (“ = 38”) is being encoded in the imaginal buffer, the next
step in the unwind strategy is being retrieved, and the visual system is encoding the left-hand
side of the equation. Certain of these activities tend to be on the critical path because they are
taking longer than the other processes, and further processing has to wait for them to complete.
In these cases, the times of the other operations have no effect on total time. For instance, often
the visual encoding of the equation is holding up other operations and the durations of these
other operations do not matter.

320 J. R. Anderson/Cognitive Science 29 (2005)

Table 1
English rendition of instructions given to ACT–R model for equation solving

1. To solve an equation, encode it and
a. If the right side is a number, then imagine that number as the result, and focus on the left side and unwind it.
b. If the left side is a number, then imagine that number as the result, and focus on the right side and unwind it.

2. To unwind an expression
a. If the expression is the variable, then the result is the answer.
b. If a number is on the right unwind-right.
c. If a number is on the left unwind-left.

3. To unwind-right, encode the expression (of the form “subexpression operator number”) and
a. If the operator is + or – and the number is 0, then focus on the subexpression and unwind it.
b. Otherwise invert the operator, imagine it as the operator in the result, imagine the number of the

expression as the second argument in the result, evaluate the result, and then focus on the subexpression
and unwind it.

4. To unwind-left encode the expression (of the form “number operator subexpression”) and
a. If the operator is * and number 1 then focus on the subexpression and unwind it.
b. Otherwise check that the operator is symmetric, invert the operator, imagine it as the operator in the result,

imagine the number as the second argument in the result, evaluate the result, and then focus on the
subexpression and unwind it.
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this form but can be simplified so that they are in the appropriate form. The model in this article
assumes that the equations are already in a form to which the unwind strategy can immediately
apply. The earliest instruction on equation solving tends to focus on such problems and teaches
students the justifications for these transformations as well as providing practice on how to
perform them, although students are typically not taught to think of this as a general unwind
strategy but rather as a series of more specific operations. We have found, however, that begin-
ning students are quite capable of understanding the general unwind principle and its justifica-
tion and can use it with its full generality.

In the experiment to be modeled in detail (Qin et al., 2004) 10 students ages 11 to 14 spent 6
days practicing solving such equations. The first day (Day 0) they were given private tutoring
on this class of equations, using the unwind principle, and practiced paper and pencil solutions
of such problems with a private human tutor. On the remaining 5 days they practiced on a com-
puter the solution of three classes of equations:

0-step: e.g., 1x + 0 = 4 (5)

1-step: e.g., 3x + 0 = 12, 1x + 8 = 12 (6)

2-step: e.g., 7x + 1 = 29 (7)

Each day they went through 10 computer-administered blocks of such equations. Each
block consisted of 16 trials with four instances of the four possible types of equations (there are
two subtypes for the 1-step equations). Fig. 2 presents their latency and the predictions of a
model that will now be described.

318 J. R. Anderson/Cognitive Science 29 (2005)

Fig. 2. Mean solution times (and predictions of the ACT–R model) for the three types of equations as a function of
delay. Although the data were not collected, the predicted times are presented for the practice session of the experi-
ment (Day 0).
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Fig. 3. Comparison of the module activity in ACT–R during the solution of a two-step equation on Day 1 (a) with a
two-step equation on Day 5 (b). In both cases the equation being solved is 7*x + 3 = 38.

base level 
activation
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Converging Evidence via Brain Imaging

• Postulate cerebral correlate for each buffer (a priori)

• Modules:            Brain region:

– visual               (visual)
– manual             (motor)
– procedural       caudate (now: basal ganglia)
– declarative       prefrontal
– imaginal           parietal
– control (goal)   anterior cingulate 

• Goal:  Triangulation of data/model/brain

• Method: fMRI (data glove)

74



Rensselaer Cognitive
Science

BOLD response
• Blood-oxygen level dependent (BOLD):

Delayed hemodynamic response indicating summary of 
metabolic activity

• 3 parameters: magnitude, time scale, shape

75

In summary, a model for the time course (Fig. 3) of this task yields engagement functions
f(t) such as those in Fig. 4. By convolving the engagement functions with the BOLD function
one can obtain predictions for the BOLD response in the regions associated with the modules.
Most of the parameters of this model are set according to prior values established for ACT–R,
but fitting the latency in Fig. 2 did require estimating parameters for the time to encode the
equation and the duration of the retrievals. Having now committed to the time course of each
module, predictions immediately follow for the time course of the cumulative BOLD response.
The exact height and shape of the BOLD response depends on the magnitude (m), the scale (s),
and the exponent (a) for the region that corresponds to that module. However, the strong pa-
rameter-free prediction is that the relative areas under the BOLD responses in two conditions
for a region will reflect the relative amounts of time this region is engaged in these two condi-
tions. Thus, the BOLD response provides a direct check on assumptions about the amount of
time various modules are engaged in doing a task.

328 J. R. Anderson/Cognitive Science 29 (2005)

Fig. 5. An illustration of the impact of different choices of the exponent (a) and time scale on the shape of the
hemodynamic function. To facilitate comparison, the magnitude parameter (m) has been scaled so that all of these
functions have a maximum of 1.0.

Table 2
Parameters estimated and fits to the BOLD response

Motor/
Manual

Prefrontal/
Retrieval

Parietal/
Imaginal

Cingulate/
Goal

Caudate/
Procedural

Magnitude (m) 0.531 0.073 0.231 0.258 0.207
Exponent (a) 3 3 3 3 3
Scale (s) 1.241 1.545 1.645 1.590 1.230
Correlation .975 .963 .969 .981 .975
Chi-square (105 df) 88.93 82.60 95.21 123.27 81.03
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Table 2 gives the estimated parameters for the BOLD response and Fig. 6 shows how well
this model predicts the BOLD responses in the six conditions achieved by crossing day and
number of steps of transformation for each of the five associated regions. To simplify matters
and to make the functions more comparable, the exponent of the BOLD response was set to 3
for all regions. To keep the data presentation readable and get better estimates, Fig. 6 either av-
erages over days or over conditions.5

5.3. Characterizing the differences among the brain regions

The first impression one probably gets from Fig. 6 is that the BOLD responses for the five
regions look a lot alike. All show a characteristic hemodynamic response that goes up and co-
mes down with the trial structure. Furthermore, most regions show a stronger response for
more transformations and a stronger response on Day 1. This is quite characteristic of imaging
results where disparate regions of the brain give quite similar responses to the material. With-
out a strong theory to guide one’s expectations, one is in danger of missing the differences and
concluding that the whole brain (or at least those regions that respond—not all regions in the
brain respond to the task structure in this experiment) is reflecting a global response to the task.
However, if one knows where to look, there are characteristic differences. Although this one
experiment does not reveal all the differences in the behavior of all five regions, it does reflect

J. R. Anderson/Cognitive Science 29 (2005) 329

Fig. 6. Use of module behavior to predict percent increase in BOLD response in various regions: (a) Manual mod-
ule predicts motor region; (b) Retrieval Module predicts prefrontal region; (c) Control/Goal module predicts ante-
rior cingulate region; (d) Imaginal/Problem State module predicts parietal region; (e) Procedural module predicts
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Fig. 6. (continued)
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Fig. 6. (continued)
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Fig. 6. (continued)
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Fig. 6. (continued)
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Discussion & Conclusion

• Simple, yet complex...

• Algebra a “uniquely human” skill?

• Explanation by behavior production & convergence on 
multiple levels

• Unified theories vs. 20 questions (Newell, 1973)
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Conclusion:  Why bother?
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• Cognitive science services:

– Explore constraints (biological, 
developmental, cultural)

– Directing questions

– Methodologies

– Applications, e.g., teaching & training

• A ‘rational’ basis of mathematics? 
mathematical mind as an adaptation 
to the structure of the world...



http://www.cogsci.rpi.edu/cogworks/

The End

Questions, comments, criticism...
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